

Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR) – TIMI 53

Deepak L. Bhatt, MD, MPH On behalf of the SAVOR-TIMI 53 Steering Committee and Investigators

European Society of Cardiology, Amsterdam - September 2, 2013

NCT01107886; Funded by AstraZeneca and Bristol-Myers Squibb

Advisory Board: Elsevier Practice Update Cardiology, Medscape Cardiology, Regado Biosciences; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care; Chair: American Heart Association Get With The Guidelines Steering Committee; Honoraria: American College of Cardiology (Editor, Clinical Trials, Cardiosource), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Duke Clinical Research Institute (clinical trial steering committees), Population Health Research Institute (clinical trial steering committee), Slack Publications (Chief Medical Editor, Cardiology Today's Intervention), WebMD (CME steering committees); Other: Senior Associate Editor, Journal of Invasive Cardiology; Data Monitoring Committees: Duke Clinical Research Institute; Harvard Clinical Research Institute; Mayo Clinic; Population Health Research Institute; Research Grants: Amarin, AstraZeneca, Bristol-Myers Squibb, Eisai, Ethicon, Medtronic, Sanofi Aventis, The Medicines Company; Unfunded Research: FlowCo, PLx Pharma, Takeda.

This presentation discusses off-label and/or investigational uses of diabetes drugs including saxagliptin.

Type 2 Diabetes and Cardiovascular Risk

- Many studies in patients with DM have demonstrated that improved glucose control reduces *microvascular* complications.
- However, uncertainty remains regarding whether any particular glucose-lowering strategy is safe from a CV standpoint or can actually lower *macrovascular* complications (e.g., MI, stroke, or CV death).
- Saxagliptin is a dipeptidyl peptidase 4 (DPP-4) inhibitor that lowers glucose.

Time to Onset of First Primary MACE in Prior Pooled Analysis

Frederich R, et al. Postgraduate Medicine 2010;122(3). doi: 10.3810/pgm.2010.05.2138.

Primary Objective

- To determine whether when added to background therapy, saxagliptin would be noninferior to placebo for the composite endpoint of CV death, non-fatal MI, or non-fatal ischemic stroke (Upper 95% CI of HR < 1.3).
- And if non-inferiority were met, to determine if saxagliptin would be superior to placebo.

Trial Organization

TIMI Study Group **Eugene Braunwald (Chair) Benjamin M. Scirica Timothy Abrahamsen** Michelle Grossman

Deepak L. Bhatt (Co-PI) Stephen D. Wiviott (CEC) Elaine B. Hoffman (Statistics) Kyungah (Kelly) Im (Statistics)

Hadassah Medical Organization Itamar Raz (Co-PI)

Ofri Mozenson

Alona Buskila

Christina Stahre

TIMI

Sponsor: AstraZeneca/Bristol-Myers Squibb **Boaz Hirshberg** Peter Ohman **Robert Frederich** Nayyar Iqbal

Data Safety Monitoring Board Bernard Gersh (Chair) **Richard Nesto** Sheryl Kelsey

Stefano Del Prato Jaakko Tuomilehto

Executive Committee Eugene Braunwald (Chair) Ph. Gabriel Steg **Boaz Hirshberg (non-voting) Robert Frederich (non-voting)**

Deepak L. Bhatt (Co-PI) Itamar Raz (Co-PI) Jaime Davidson

National Lead Investigators

Argentina (554) L Litwak/E Paolasso Australia (188) J Amerena/R Moses **Brazil** (359) F Eliaschewitz/JC Nicolau **Canada** (980) L Leiter Chile (300) V Codoceo/R Corbalan China (221) W Jia/Y Huo Czech Republic (620) A Smahelova/J Spinar France (115) P Henry/M Krempf Germany (493) **R** Bretzel/H Darius Hong Kong (304) R Ma

Hungary (728) **G** Jermendy/R Kiss India (463) **BS Raju/KM Kumar** Israel (954) **B** Lewis/I Raz Italy (334) D Ardissino/A Avogaro **Mexico (965)** C Aguilar-Salinas/ A Garcia-Castillo Netherlands (689) J Hoekstra/ T Oude Ophius Peru (533) F Medina/ JE Villena-Chavez **Poland** (676) G Opolski/K Strojek

Russian Federation (834) O Averkov/M Ruda/ M Shestakova South Africa (544) F Bonnici/A Dalby **Spain** (258) J Lopez-Sendon/R Gomis Sweden (294) M Alvarsson/M Dellborg Taiwan (177) **C-E Chiang/** W H-H Sheu Thailand (200) C Deerochanawong/ P Sritara United Kingdom (423) S Heller/K Ray United States (4,286) D Bhatt/J Davidson тімі

<u>Saxagliptin Assessment of Vascular</u> Outcomes <u>Recorded in Patients with DM -</u> TIMI 53

тімі

<u>Major Secondary EP</u>: CV death, MI, ischemic stroke, or hosp. for heart failure, unstable angina, or coronary revascularization

Inclusion Criteria Patient Population

All patients were to have the diagnosis of T2DM and <u>all</u> of the following:

- 1. Age ≥40 years, and
- Documented HbA1c ≥6.5% in the previous 6 months, and
- 3. High risk for a CV event with:
 - 1. Established CV Disease
 - or
 - 2. Multiple Risk Factors Cap at 25% of initial pts.
 - Must be ≥ 55 y.o. (male) or 60 y.o. (female)
 - Dyslipidemia, hypertension, or current smoking

Definition of High Risk for CV Disease Established CV Disease

or

Evidence of atherosclerosis in at least 1 vascular bed

 PCI/CABG of at least 2 arteries, or

or

 Known stenosis **>50% in at least 2** arteries

Prior Ischemic

Stroke*

Hx Claudication AND

PAD

- ABI<0.9, or ullet
- **Prior revasc** igodolor amputation
- * Must be >2 months before randomization

Baseline Characteristics

тімі

	Placebo (N = 8,212)	Saxagliptin (N = 8,280)
Age	65 yr	65 yr
Female (%)	33	33
Established CVD <i>n</i> =12,959	79	78
Multiple Risk Factors <i>n</i> =3,533	21	22
Cardiac Risk Factors (%)		
Dyslipidemia	71	71
HTN	82	81
Prior MI	38	38
Prior CHF	13	13
Prior Coronary Revasc.	43	43

Baseline Medications

ТІМІ

	Placebo	Saxagliptin
	(N = 8,212)	(N = 8,280)
Cardiovascular Medications (%)		
Aspirin	75	76
Statin	78	78
ACEi	55	54
ARB	28	28
Beta Blocker	62	62
Diabetic Medications (%)		
Insulin	41	42
Sulfonylurea	40	41
TZD	6	6
Metformin	69	70
None	5	4

Mean HbA1c (%)

HbA1c <7.0%

These changes were in the context of:

- 23% \downarrow in the intensification of anti-hyperglycemic medications with saxagliptin compared to control (p<0.001), and
- 30% ↓ in the initiation of insulin therapy for more than 3 months with saxagliptin compared to control (p<0.001).

Primary Endpoint

Secondary Endpoint

Individual Endpoints

TT Population	2-year l	KM rate (%)		
	Placebo (N=8,212)	Saxagliptin (N=8,280)	HR	p value for superiority
CV Death	2.9	3.2	1.03 (0.87-1.22)	0.72
MI	3.4	3.2	0.95 (0.80-1.12)	0.52
Ischemic Stroke	1.7	1.9	1.11 (0.88-1.39)	0.38
Hosp for Cor. Revasc	5.6	5.2	0.91 (0.80-1.04)	0.18
Hosp for UA	1.0	1.2	1.19 (0.89-1.60)	0.24
Hosp for Heart Failure	2.8	3.5	1.27 (1.07-1.51)	0.007
All-Cause Mortality	4.2	4.9	1.11 (0.96-1.27)	0.15

Sub-Group Analysis Primary Endpoint

		2-year l	KM Rate (%)		
		<u>Placebo</u>	Saxagliptin		Hazard Ratio
Age	< 75 years	6.6	6.9		1.01
	≥ 75 years	11.3	10.0		— 0.96
Sex	Male	7.8	8.1		1.01
	Female	6.0	5.7		- 0.97
Athero-	Established	8.5	8.4		0.96
sclerosis	Multiple Risk Factors	2.6	3.6		 1.34
Estimated	>50	6.3	6.6	-+-	1.01
GFR	30-50	11.5	11.0		<u> </u>
	<30	17.2	14.7		<i>0.83</i>
Overall		7.2	7.3		1.00 (0.89-1.12)
		0.2	0.5	1	2
			Favors Saxaglipti	n F	avors Placebo

p>0.05 for all interactions between treatment and subgroups

Sub-Group Analysis Primary Endpoint

2-year KM Rate (%)						
		<u>Placebo</u>	Saxagliptin	1	Hazard Ratio	
Duration of	<5 yrs	4.9	5.3		- 1.07	
Diabetes	5-<10 yrs	6.2	6.5	_	1.04	
	10-<15 yrs	7.8	7.6		0.94	
	15-<20 yrs	8.4	8.8		- 1.06	
	≥20 yrs	10.1	9.7		0.93	
Baseline	<7%	5.3	5.3		1.01	
HbA1c	7-<8%	6.8	6.6		0.98	
	8-<9%	7.5	8.5	_	- 1.09	
	≥9%	10.0	9.8		0.95	
Baseline Insulin	Yes	9.1	9.7		1.03	
	Νο	5.9	5.6		0.96	
Baseline Sulfonylurea	Yes	6.9	6.4		0.95	
	No	7.5	7.9		1.03	
Overall		7.2	7.3		1.00 (0.89, 1.12)	
		0.2	0.5	1	2	
			Favors Saxagli	iptin Favo	rs Placebo	

p>0.05 for all interactions between treatment and subgroups

Changes in Microalbuminuria

Shift from baseline category (<3.4, ≥3.4 - ≤33.9, or >33.9 mg/mmol)

Saxagliptin Placebo

End of Treatment

Hypoglycemia

Major – required assistance to actively intervene Minor – symptoms, but recovered by themselves within 30 minutes, or glucose level < 54 mg/dl, regardless of symptoms.

Endpoints of Special Interest

	Placebo (N=8,212)	Saxagliptin (N=8,280)	p value
Severe Infection (%)	7.0	7.1	0.78
Opportunistic Infection (%)	0.4	0.3	0.06
Any Liver EOSI/Abnormality (%)	0.8	0.7	0.28
Bone Fracture (%)	2.9	2.9	1.00
Cancer (%)	4.4	4.0	0.15

Sa

TIMI STUDY GROUP / HAD

Pancreatic Events

тімі

	Placebo (N=8,212)	Saxagliptin (N=8,280)	p value
Pancreatitis (adjudicated), n (%)			
Any	21 (0.3)	24 (0.3)	0.77
Acute (Definite)	9 (0.1)	17 (0.2)	0.17
Acute (Definite or Possible)	16 (0.2)	22 (0.3)	0.42
Acute (Possible)	7 (0.1)	6 (0.1)	0.79
Chronic	6 (0.1)	2 (0.02)	0.18
Pancreatic Cancer, n (%)	12 (0.1)	5 (0.06)	0.095

Savery Baseline NT-pro BNP and Hospitalization for Heart Failure

Preliminary data (N=12,397 patients; 387 HF events)

(5 - 64) (65 - 140) (141 - 332) (333 - 46,627 Quartiles of NT-proBNP (pg/ml)

ΤΙΜΙ

- Modest difference in glycemic control, as add-on therapy had to be allowed and was significantly greater in placebo.
- Median follow-up of 2.1 years, so cannot comment on potential for cardiovascular benefit with longer treatment.
- Not designed to assess impact of therapy on microvascular events.

 When added to standard of care in patients with T2DM at high CV risk, saxagliptin neither reduced nor increased the risk of the primary composite endpoint of CV death, MI, or ischemic stroke.

Conclusions

- In addition, saxagliptin:
 - Improved glycemic control
 - Decreased the need for insulin and other diabetes medications
 - Increased hypoglycemic events, but not hospitalization for hypoglycemia
 - Prevented progression of microalbuminuria
 - Did not increase risk of pancreatitis or pancreatic cancer

Conclusions (Heart Failure)

- The higher incidence of hospitalization for heart failure was unexpected, but it was a pre-defined, adjudicated endpoint.
- It merits further evaluation given the history of other diabetic agents and heart failure.
- Additional analyses are ongoing, and preliminary data suggest that the absolute risk is highest in those with elevated baseline clinical risk for heart failure and/or elevated BNP levels.

Implications

- SAVOR-TIMI 53 highlights the importance of performing large trials with clinical cardiovascular endpoints for diabetes drugs.
- Further research is needed to explore the relationship between HbA1c and cardiovascular outcomes.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus

Benjamin M. Scirica, M.D., M.P.H., Deepak L. Bhatt, M.D., M.P.H., Eugene Braunwald, M.D., P. Gabriel Steg, M.D., Jaime Davidson, M.D., Boaz Hirshberg, M.D., Peter Ohman, M.D., Robert Frederich, M.D., Ph.D., Stephen D. Wiviott, M.D., Elaine B. Hoffman, Ph.D., Matthew A. Cavender, M.D., M.P.H., Jacob A. Udell, M.D., M.P.H., Nihar R. Desai, M.D., M.P.H., Ofri Mozenson, M.D., Darren K. McGuire, M.D., Kausik K. Ray, M.D., Lawrence A. Leiter, M.D., and Itamar Raz, M.D., for the SAVOR-TIMI 53 Steering Committee and Investigators*

гтмі

Scirica BM, Bhatt DL, Braunwald E, et al.... Raz I. NEJM 2013 at www.NEJM.org.